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Abstract: Coastal aquaculture plays an important role in the provision of seafood, the sustainable
development of regional and global economy, and the protection of coastal ecosystems. Inappropriate
planning of disordered and intensive coastal aquaculture may cause serious environmental problems
and socioeconomic losses. Precise delineation and classification of different kinds of aquaculture
areas are vital for coastal management. It is difficult to extract coastal aquaculture areas using the
conventional spectrum, shape, or texture information. Here, we proposed an object-based method
combining multi-scale segmentation and object-based neighbor features to delineate existing coastal
aquaculture areas. We adopted the multi-scale segmentation to generate semantically meaningful
image objects for different land cover classes, and then utilized the object-based neighbor features for
classification. Our results show that the proposed approach effectively identified different types of
coastal aquaculture areas, with 96% overall accuracy. It also performed much better than other
conventional methods (e.g., single-scale based classification with conventional features) with higher
classification accuracy. Our results also suggest that the multi-scale segmentation and neighbor
features can obviously improve the classification performance for the extraction of cage culture areas
and raft culture areas, respectively. Our developed approach lays a solid foundation for intelligent
monitoring and management of coastal ecosystems.

Keywords: coastal aquaculture; coastal ecosystem management; remote sensing; object-based image
analysis (OBIA)

1. Introduction

Marine aquaculture, particularly coastal aquaculture, offers an important potential for food
production and the sustained development of many coastal areas, especially in regions with limited
land, coastal space, and freshwater resources [1,2]. However, inappropriate planning of disordered
and intensive coastal aquaculture may cause serious environmental problems and socioeconomic
losses. The potential issues include water pollution [3,4], impacts on the surrounding sediment [5],
damages to coral reefs, and biodiversity loss in coastal sea areas [6]. Globally, from 2000 to 2016,
the total production of marine aquaculture has increased from 14.2 to 28.7 million tons [7,8]. As the
largest producer, China has contributed to more than 50% of global aquaculture production since
1991 [8]. In China, a series of laws and regulations at national or local level, such as the Marine
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Environmental Protection Law, overall marine functional zonation, and nature reserve schemes, have
been formulated for the management of coastal areas. However, comprehensive coastal management
in China is still a big challenge. Thus, the monitoring and management of coastal aquaculture are
imperative to ensure sustainable development of marine aquaculture industry.

Remote sensing technology has substantially improved our ability to observe remote or
inaccessible areas at a fraction of the cost of traditional surveys [9]. Mapping and monitoring of
aquaculture facilities provide decision-makers with important baseline data on production, cultivated
area boundaries, and environmental impacts [10,11]. Remote sensing can provide consistent and
wide-range monitoring using various sensors to support aquaculture management [12–14], which
means the mapping of aquaculture facilities can be performed accurately and periodically at
selected scales.

Previous studies have used visual interpretation, spatial structure enhanced analysis, and object
based image analysis (OBIA) to extract coastal aquaculture areas from remotely sensed imagery.
Although visual interpretation can achieve the highest accuracy, it takes a lot of time and effort. Thus,
it is less used presently. Spatial structure enhancement techniques, such as neighborhood and texture
analysis, are the most commonly adopted methods in the classification process [15,16]. OBIA has
become a widely used method in the past decades, especially for the classification of very high spatial
resolution (VHSR) imagery [17]. The basic processing unit in OBIA is image object, which is generated
by grouping pixels with similar features into an object, instead of a single pixel [18]. Thus, OBIA can
avoid “salt-and-pepper” effects caused by pixel-based methods [19], and performs better with VHSR
imagery [20].

However, due to the complexity of the sea environment, coastal aquaculture areas often exhibit
many different characteristics with each other in traditional spectrum, shape, and texture features.
In addition, they may be spectrally confused with surrounding waters in VHSR imagery. As a result,
it is much harder for accurate classification when relying on only individual segment information.
Furthermore, there are also different-scale coexisting objects in the sea area, such as various islands
and watercrafts. These unfavorable factors challenge accurate coastal aquaculture mapping from
VHSR imagery.

More recent studies highlight a new trend that uses multi-scale segmentation and spatial
contextual information for classification. Kim et al [21] used an OBIA method with VHSR aerial
imagery (0.3 m spatial resolution) to extract marsh vegetation, channel, and bare mud areas from
a salt marsh area. Their results suggest that the multi-scale OBIA method produced the highest
classification accuracy. Zhou and Troy [22] developed a multi-scale object-based classification method,
which provided an effective and flexible way to classify and inventory forest cover from digital aerial
imagery (0.6 m spatial resolution). Liu et al [23] investigated the shape of segments and topological
relations among them, and proposed a framework for the extraction of roads and moving vehicles from
an aerial photo (0.3 m spatial resolution). Zheng et al [24] attempted to extract different types of rural
settlements by combining a multi-scale segmentation strategy and a landscape analysis method, which
achieved high classification accuracy. Wang et al [25] proposed the region-line primitive association
framework (RLPAF) for discriminating raft aquaculture areas, which is mainly constructed from the
direction and topology relationships between regions and line primitives.

Here, we present a framework to solve the previously mentioned problems by synthesizing the
multi-scale segmentation and spatial contextual information. We adopted a multi-scale segmentation
strategy to generate semantically meaningful image objects for different types of land cover classes.
Subsequently, we utilized the object-based neighbor features to extract coastal aquaculture areas in
the complex sea environment. We employed the neighbor features because almost all the coastal
aquaculture areas have a darker or brighter tone than the surrounding sea water, which shows higher
robustness than the features based on the statistics of spectrum, shape, or texture of a single image
segment. The main objective of this paper is to establish a framework and methodology to extract
different types of existing coastal aquaculture areas by exploiting object-based neighbor information.



www.manaraa.com

Sustainability 2019, 11, 637 3 of 20

2. Study Area

We selected a coastal area of approximately 110 km2 around Sandu Island as the study area, which
is located in Ningde City, Fujian Province, China (119◦40′54”E, 26◦39′21”N, Figure 1). This location
is characterized by its ideal environment for coastal aquaculture, as it has unique hydrological and
geographical conditions; namely, the semi-closed natural harbor and several small islands located
in the harbor mouth, weakening typhoons, and accumulating nutrients in seawater, which provide
an ideal environment for aquaculture. Therefore, a large number of aquaculture areas, which mainly
include raft culture areas (RCA) and cage culture areas (CCA), were developed in this region (Figure 2).
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Figure 2. Image examples of aquaculture areas on the ground: (a) Cage culture areas (CCA); (b) Raft
culture areas (RCA).

CCA are composed of abundant fish cages and several simply constructed accommodation units.
The materials used for these fish cages include easily obtained wooden boards, bamboo, nylon nets,
or foam. Almost all of the CCA are not assembly line productions with engineering standards,
so they have varied structures and present very complex and different characteristics in spectrum,
shape, and texture.
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RCA are generally widely and sparsely distributed, and cultivated with agar or kelp. Those plants
are stuck to the cultivation belt, and fixed on the rope-linked styrofoam floats. Therefore, the color
and shape of RCA are very different from each other due to the various density of cultivation belts.
Besides, the complex sea environment, such as unstable and irregular distribution of waves and silt,
makes it difficult for the extraction of RCA.

3. Materials and Methods
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Figure 3. Overall framework for the multi-scale based neighbor information classification (MNIC)
method in this paper.

Figure 3 shows the overall methodological framework of this research. Following preprocessing
and pan-sharpening, the land surface, which is not be classified in this study, was firstly masked by
using a rule-based approach. We obtained the optimal features and threshold by applying an automatic
feature selection methodology. Subsequently, we operated a coarser scale segmentation in the sea
area. Based on the coarser scale segments, we separated the submerged and unsubmerged areas.
We performed the separation process because we wanted to create semantically meaningful objects
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for CCA and RCA in the separated unsubmerged area and submerged area, respectively. After that,
we defined and calculated several object-based neighbor features based on the multi-scale segments.
We then conducted the final classification process to identify the RCA and CCA by combining
these neighbor features. To verify whether our proposed multi-scale based neighbor information
classification (MNIC) method can effectively improve the classification accuracy, we adopted a
single-scale based conventional information classification (SCIC) scheme for comparison. Besides,
we also studied the effects of multi-scale segmentation and neighbor features by using the multi-scale
based conventional information classification (MCIC) method and the single-scale based neighbor
information classification (SNIC) method, respectively.

3.1. Data and Preprocessing

We selected the Worldview-2 (WV-2) image as the data source because of its very high spatial
resolution compared to similar satellites, such as IKONOS, GF-2, QuickBird, and GeoEye-1. WV-2 is
the first commercial satellite that can provide eight multispectral bands with sub-meter resolution.
The satellite provides a spatial resolution of approximately 2 m for 8 multispectral bands (MSS): coastal
(400–450 nm), blue (450–510 nm), green (510–580 nm), yellow (585–625 nm), red (630–690 nm), red
edge (705–745 nm), near infrared-1 (770–895 nm), and near infrared-2 (860–1040 nm). The satellite also
provides a panchromatic band (PAN, 450–800 nm) with about 0.5 m spatial resolution [26]. A WV2
image of the study area was acquired on May 20, 2011, with a cloud-free and haze-free atmospheric
condition for the whole aquaculture area, thus the atmospheric correction was not necessary in
the preprocessing step [27]. The MSS image and PAN image were orthorectified into the Universal
Transverse Mercator (UTM) projection system, and fused using Gram–Schmidt pan-sharpening method
in ENVI (v5.1, Exelis Visual Information Solutions, Boulder, CO, USA, 2014).

3.2. Land and Sea Areas Separation

Following preprocessing and pan-sharpening, we adopted the widely used multiresolution
Segmentation (MRS) algorithm [28], which was implemented in the eCognition software (v9.0,
Trimble Germany GmbH, Munich, Germany, 2014) to produce semantically meaningful image objects.
This algorithm is based on a bottom-up region-merging method and mainly controlled by three key
parameters: scale parameter (SP), shape, and compactness.

As the land area occupies a large and continuous area with high heterogeneity, we determined the
optimal SP by a trial-and-error optimization. The ideal segmentation results are expected to have clear
boundaries, high separability between classes, and enough segments for the selection of representative
samples. We tested Eight different SPs (scales: 100, 300, 700, 1000, 3000, 5000, 7000, and 9000) to obtain
the ideal segmentation results that can be helpful to discriminate between land and sea areas. Shape
was given less importance by assigning a value of 0.1 for various shapes of coast line. The weight of
compactness was assigned a value of 0.5, because we wanted to treat them equally.

Based on the segmentation results, we used a total of 34 spectral and geometrical features
(Table 1) for analysis. We then employed the SEparability and THresholds (SEaTH) method [29] to
find an optimal feature that can effectively discriminate between land and sea areas. In this method,
Jeffries–Matusita Distance J is used to measure the separability between two classes on a scale (0–2).
Complete discrimination of the two classes can be indicated by J = 2. In other words, based on
the selected samples, the two classes can be separated without misclassification using the selected
feature for classification, and the number of misclassified objects will increase if the value of J is lower.
It is calculated as:

B =
1
8
(m1 −m2)

2 2
σ1 + σ2

+
1
2

ln
[

σ1
2 + σ2

2

2σ1σ2

]
(1)

J = 2
(

1− e−B
)

(2)
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where mi and σi, i = 1,2, are the mean and the variance of land and sea areas feature
distributions, respectively.

Following the selection of optimal feature with the highest J value, threshold T for the separation of
the two classes is calculated as:

A = log
(

σ1

σ2
× n2

n1

)
(3)

T =
m2σ1

2 −m1σ2
2 ± σ1σ2

√
(m1 −m2)

2 + 2A(σ1
2 − σ22)

σ1
2 − σ22 (4)

where ni, i = 1,2, are the number of samples of land and sea area, respectively.

Table 1. Object features used for image analysis with the separability and threshold (SEaTH) method.

Feature Type Features Descriptions

Normalized
difference index

Normalized Difference
Vegetation Index (NDVI) (band8 − band5)/(band8 + band5)

Normalized Difference
Water Index (NDWI) (band1 − band8)/(band1 + band8)

Spectral features

Mean Layer i
(i = 1,2,3,4,5,6,7,8) Means of band i (i = 1,2,3,4,5,6,7,8)

Standard deviation Layer i
(i = 1,2,3,4,5,6,7,8) Standard deviations of band i (i = 1,2,3,4,5,6,7,8)

Brightness Average of means of bands 1–8
Maximum difference (Maximum difference of bands 1–8)/brightness

Geometry features

Area Area of an image object

Asymmetry Relative length of an image object, compared to
a regular polygon

Length Length of an image object
Width Wight of an image object
Length/Width Length-to-width ratio of an image object
Border index The jagged degree of an image object
Border length Sum of edges of the image object
Compactness The compact degree of an image object

Density The distribution in space of the pixels of an
image object

Elliptic Fit The degree of an image object fits into an
ellipse of similar size and proportions

Rectangular Fit The degree of an image object fits into a
rectangle of similar size and proportions

Roundness The similarity an image object with an ellipse
Shape index Smoothness of an image object border
Volume Number of voxels of an image object

3.3. Two-Level Hierarchical Segmentation

After the separation of land and sea areas, we operated a two-level hierarchical segmentation
scheme in the sea area to generate coarser and finer scale image objects, which were expected to
represent semantically meaningful image objects of CCA and RCA, respectively. Instead of the
commonly used trial-and-error process, we adopted an objective method, which is called Estimation of
Scale Parameter (ESP) tool [30], to select the candidate SPs. The ESP tool iteratively performs
segmentation in fixed step sizes and calculates the local variance (LV) for each scale. Figure 4 shows
the LV values that were plotted against the corresponding SPs. Based on this figure, the peaks in the LV
curve indicate appropriate SPs. At these peaks, they are expected to represent semantically meaningful
objects characterized by relatively equal degrees of homogeneity. The graph shows that the scale of
144 represents an obvious sharp break after a continuous and abrupt increase. Thus, we set 144 as the
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finer segmentation scale. After a visual evaluation of the candidate SPs near 180, we selected 186 as
the coarser segmentation scale.
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We gave the shape factor less importance by assigning a value of 0.1 for various shapes of RCA at
the finer scale, and 0.5 for the regular shape of CCA at the coarser scale. We assigned the weight of
compactness a value of 0.5 at each level, because we wanted to treat them equally. We tested and found
these parameters were suitable for the corresponding targets. Meanwhile, we used eight bands of
WV-2 image as input raster layers for the MRS algorithm, and assigned them the same weight of 1 at
each level.

3.4. Creating Semantically Meaningful Objects for CCA and RCA

With the selection of optimal SPs, we adopted a two-level segmentation strategy to create
semantically meaningful objects for CCA and RCA, respectively. First, we operated an MRS algorithm
using the coarser scale of 186 in the sea area, generating 7594 objects. Then, we applied a rule-based
method to separate the submerged and unsubmerged area, again using the SEaTH method. As a result,
the segments of sea water and RCA were classified as submerged area. Meanwhile, the segments of
CCA and watercraft were classified as unsubmerged area. After the separation of unsubmerged area
and submerged area, we merged the neighbor image objects of unsubmerged area to create semantically
meaningful objects for CCA. To create semantically meaningful objects for RCA, we segmented the
unsubmerged area again using the finer scale of 144, generating 9602 objects.

3.5. Neighbor Features Calculation and Final Classification

3.5.1. Features Based on Neighborhood Relationship

Let object O be a set of pixels within image I. O = {oi = (xi, yi) | i∈[1, k], k = |O|} where x and y
are the image object coordinates, and |·| is the cardinality of a set. Let Bo be the boundary pixels of O.
In this case, two image objects u and v are considered neighbors if they contain pixels that neighbor
each other:

Bu ∩ Bv 6= ∅. (5)
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Let D (u, c) be a set of darker/brighter neighbor image objects for image object u at a given
feature c. Let b (u, v) as the sum of edges of the image object u shared with other image objects in
D (u, c). We define the Real border to darker/brighter objects feature (RBDs/RBBs) of an image object
as follows:

RBDs(u)/RBBs(u) = ∑v∈D(u,c)
b(u, v)

bu
. (6)

The RBDs/RBBs measures the extent to which an image object is surrounded by darker/brighter
neighbor image objects on a scale [0-1]. A value of 1 means the image object is completely surrounded
by darker/brighter neighbors. The lower RBDs is, the more neighbors were brighter image objects.

Let N (u, c) be a set of neighbor image objects for image object u at a given feature c. The Mean
difference to neighbors feature (MDNs) is defined as follows:

MDNs(u) = ∑v∈N(u,c)(c(u)− (v)). (7)

The MDNs calculates the difference between an image object and its neighbor image objects.
A negative/positive value means the image object is darker/brighter than the neighbor environment.
Meanwhile, a larger absolute value means larger difference with the neighbor environment.

3.5.2. CCA and RCA Mapping

In this classification procedure, we identified the CCA, RCA, sea water, and watercraft by using
nearest neighbor classification (NNC) method based on the multi-scale segments. The NNC method
generally has good results with carefully chosen valuable features [31]. It is suitable for this study
because we wanted to fully explore the potential value of neighbor features and traditional features,
such as spectrum, shape, and texture. Besides, NNC is straightforward to implement and does not
require hyperparameter definitions. Thus, NNC is considered as an appropriate method for our
classification and comparison purposes.

In the feature selection phase, we employed feature space optimization (FSO), a tool available
in eCognition, to select the optimal feature combination. Based on selected samples, FSO calculates
the Euclidean distance in feature space between classes and chooses the best combination of features,
resulting in the largest minimum distances between the least separable classes [32]. Eventually, the best
feature combination included RBBs (bands 1–8), MDNs (bands 3–8), NDVI, NDWI, mean of bands 1–3,
standard deviation of band 1, and geometrical features (length, density, asymmetry, roundness,
compactness, shape index, border index, and rectangular fit). Finally, we selected a total of 96 samples
from 9992 segments, which is approximately 1% of the whole image objects, including 24 samples of
CCA and 25 samples of RCA.

3.6. Comparison Methods

3.6.1. Single-Scale Based Conventional Information Classification Method

To provide a comparison, we also applied a conventional object-based method to extract the CCA
and RCA. Based on the image objects at the finer scale, a SCIC scheme was applied.

The same sample areas of CCA, RCA, and other classes employed in our proposed method were
selected again, and then the NNC method was used for the classification. Compared with our proposed
MNIC approach, the SCIC method only used the traditional features and was performed at a single
scale. FSO was again applied for the feature selection from features in Table 1. Finally, the best feature
subset included mean of bands 3–8, standard deviation of band 1 and bands 4–8, brightness, maximum
difference, NDVI, NDWI, and geometrical features (density, asymmetry, roundness, compactness,
border index, shape index, rectangular fit, elliptic fit). We found that the RCA, CCA, watercraft, and
water still have differences in these attributes. Thus, to some extent, they could be discriminated by
using this method.
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3.6.2. Multi-Scale Based Conventional Information and Single-Scale Based Neighbor Information
Classification Methods

To study the effects of multi-scale segmentation and neighbor features, we also applied the MCIC
and SNIC methods for further comparison by controlling the segmentation strategy and feature set.
For the two methods, we selected the same sample areas of CCA, RCA, and other classes employed in
our proposed method, and selected the best feature combination by applying the FSO again. We then
trained the nearest neighbor classifier for classification.

Both of the methods were designed based on our proposed MNIC method. In the MCIC method,
we studied the effects of neighbor features by removing neighbor features before the feature selection
process. The best feature subset included the mean of bands 1–4 and bands 6–8, standard deviation of
band 1 and bands 3–8, NDVI, NDWI, and geometrical features (border index, roundness, compactness,
shape index, length, rectangular fit, density, elliptic fit, asymmetry).

In the SNIC method, we studied the effects of multi-scale segmentation strategy by applying
classification method based on the single-scale segmentation results that were same as the SCIC
method. The best feature subset included RBBs (bands 1–8), MDNs (bands 2–8), mean of bands 1 and
2 and bands 6–8, standard deviation of band 1 and bands 3–8, brightness, maximum difference, NDVI,
NDWI, and geometrical features (asymmetry, elliptic fit, density, rectangular fit, shape index, border
index, roundness, compactness, border index).

3.7. Accuracy Assessment and Comparison

In this paper, we compared our proposed MNIC method with the SCIC, MCIC, and SNIC methods.
We conducted accuracy assessment on the final classification maps, with a total of 1549 randomly
selected segments in the sea area. To construct the error matrix, we confirmed whether the segments
were correctly identified by visual interpretation. Finally, accuracy statistics, including producer
accuracy (PA), user accuracy (UA), overall accuracy (OA), and kappa coefficient, were calculated
based on the error matrix.

To compare the accuracies of the classification results between different methods, we only counted
the CCA and RCA accuracies. We adopted three commonly used evaluation metrics for the CCA and
RCA separately, including F-measure, precision, and recall [33], which are calculated as follows:

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F−measure =
2× Precision× Recall

Precision + Recall
(10)

where TP, TN, FP, and FN refer to true positives, true negatives, false positives, and false
negatives, respectively.

To avoid the influence of different segmentation strategies in these methods, we conducted an
accuracy assessment on the final classification results by visual interpretation, with 10,000 randomly
selected points in the sea area. In this research, we regarded the extraction of CCA or RCA as binary
classification. Therefore, we defined the TP as the number of correctly labeled points of CCA or RCA.

4. Results

4.1. Segmentation and Classification Results of Land and Sea Area Separation

Figure 5 shows the segmentation results with different SP settings. After a visual inspection on
the output image objects, ponds that were expected to be included in the land area are delineated at
scales of 100–3000, which can then easily be misclassified as sea area. Consequently, there is obvious
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under-segmentation at scales of 100–3000 for land and sea areas separation. Although the land and sea
areas are delineated accurately, both the scales of 7000 and 9000 have a very limited amount of segments
for training (scales of 7000 and 9000 generated a total number of 25 and 21 segments, respectively).
Besides, small islands in the sea area may also be included in a segment of sea area with the increase of
SP. Therefore, we set the scale of 5000 as the optimal SP, generating 47 segments.
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Figure 5. Examples of image segmentation results for land and sea areas separation. The numbers of
100, 300, 700, 1000, 3000, 5000, 7000, and 9000 represent eight different segmentation scales. Red lines
and blue lines represent segments in land and sea areas, respectively.

Based on the segmentation results, we selected 8 representative samples of land and sea areas.
Depending on the J values (Table 2), we classified an image segment as land area only if it satisfies
this rule:

Mean Layer 6 > 248.93. (11)

Table 2. Summarized results of the SEaTH analysis for the separation of land and sea areas (top 5).

Features J-M Distance Omen Threshold

Mean Layer 6 1.88 great 248.93
Mean Layer 7 1.74 great 147.47
NDWI 1.73 great −0.39
Brightness 1.71 great 281.88
Mean Layer 8 1.69 great 207.32

The classification results of land and sea areas are shown in Figure 6. After a visual assessment of
the output results, semantically meaningful image objects are delineated accurately at the scale of 5000,
and both of them can be identified successfully. The land areas are totally masked and all the CCA
and RCA are included in the sea area, which is fully consistent with the expectation of the framework
presented in Figure 3.
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Figure 6. Classification results for the separation of land and sea areas by using the SEaTH method
(a); some examples for the segmentation results between sea area and islands (b) or continuous land
areas (c).

4.2. Final Classification Results and Accuracy Assessment

To separate the submerged and unsubmerged area, 16 representative samples were selected from
the coarser level segmentation results in sea area, including 6 samples of unsubmerged area and
10 samples of submerged area. Depending on the J values (Table 3), an image segment was classified
as unsubmerged area only if it satisfies this rule:

NDWI < −0.53. (12)

Table 3. Summarized results of the SEaTH analysis for the separation of submerged and unsubmerged
areas (top 5).

Features J-M Distance Omen Threshold

NDWI 1.52 small −0.53
Mean Layer 6 1.50 great 218.31
Standard deviation Layer 5 1.48 great 9.66
Standard deviation Layer 8 1.47 great 37.38
Standard deviation Layer 7 1.46 great 23.77

The final classification results are shown in Figure 7, with the multi-scale segmentation results.
It visually shows that the RCA and CCA with varied sizes are delineated accurately, and both of them
are identified successfully. We also notice that a few of RCA were misclassified as sea water. This is
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because these segments were partly submerged in the wave and surrounded by the turbid sea water,
leading to a decrease in discrimination ability with the surrounding environment.
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Figure 7. Classification results of CCA and RCA using our proposed method (a); subset examples from
segmentation results, including RCA in finer scale (b) and CCA in coarser scale (c).

Table 4. Confusion matrix for the final classification results.

Predicted Class
Ground Truth

CCA Watercraft RCA Sea Water Sum UA:

CCA 89 3 1 0 93 96%
Watercraft 5 35 1 0 41 85%

RCA 0 0 433 4 437 99%
Sea water 8 0 38 932 978 95%

Sum 102 38 473 936
PA: 87% 92% 92% 99%

Overall accuracy: 96%
Kappa

coefficient: 0.93

To quantitatively assess the accuracy of the classification results, we randomly selected over
1540 segments, with no less than 570 image objects of RCA and CCA. Table 4 shows the confusion
matrix of the final classification results. We find that the RCA have the highest UA of 99%, indicating
that almost all the identified RCA in the classification results are truly RCA. The UA of the CCA is also
over 95%. The sea water has the highest PA. The RCA and watercraft have similar high PA values of
92%, which means that over 90% of the RCA and watercraft are identified successfully. Therefore, RCA
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and CCA are identified successfully, with all PA and UA values greater than 87%. We also find that the
PA for CCA and the UA for watercraft are the two lowest classification accuracy values, which is 87%
and 85%, respectively. This is because some small CCA can be easily misclassified with some ships
loaded with cargo or collective boats.

4.3. Accuracy Comparison

Visual comparison between these classification maps in Figures 8 and 9 show that our proposed
method can improve the classification performance. Compared with our proposed method (Figure 8a),
we find that: CCA and RCA still remain misclassified by using the SCIC method (Figure 8b); only the
RCA remain obviously misclassified by using MCIC method, especially when surrounded by turbid
sea water (Figure 9a); only the CCA remain obviously misclassified by using SNIC method (Figure 9b).
Thus, the multi-scale segmentation and neighbor features can provide valuable information and
improve the classification accuracy. 14 of 21 

 

 

Figure 8. Classification results of CCA and RCA by using our proposed method (a) and the 

single-scale based conventional information classification (SCIC) method (b). The black arrows 

indicate that some RCA and CCA can be successfully identified by using multi-scale segmentation 

and neighbor features instead of using single-scale segmentation and conventional features. Typical 

examples are collected from the final map: classification results of RCA using our proposed method 

(a1) and the SCIC method (b1), when the RCA are surrounded by turbid sea water; classification 

results of CCA using our proposed method (a2) and the SCIC method (b2), when the CCA have 

similar apparent features with the sea waves. 

Figure 8. Classification results of CCA and RCA by using our proposed method (a) and the single-scale
based conventional information classification (SCIC) method (b). The black arrows indicate that some
RCA and CCA can be successfully identified by using multi-scale segmentation and neighbor features
instead of using single-scale segmentation and conventional features. Typical examples are collected
from the final map: classification results of RCA using our proposed method (a1) and the SCIC method
(b1), when the RCA are surrounded by turbid sea water; classification results of CCA using our
proposed method (a2) and the SCIC method (b2), when the CCA have similar apparent features with
the sea waves.
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Figure 9. Classification results of CCA and RCA by using multi-scale based conventional information
classification (MCIC) method (a) and the single-scale based neighbor information classification (SNIC)
method (b). The black arrows indicate that some RCA and CCA can be successfully identified by using
multi-scale segmentation and neighbor features instead of using only one of them. Typical examples
are collected from the final map: classification results of RCA using MCIC method (a1) and SNIC
method (b1), when the RCA are surrounded by turbid sea water; classification results of CCA using
MCIC method (a2) and SNIC method (b2), when the CCA have similar apparent features with the
sea waves.

To further quantitatively assess the performance of the proposed method, precision, recall, and
F-measure for each method were calculated (Table 5). First, our proposed MNIC method achieved good
balance between precision and recall, with the highest precision value for RCA at 97.93%, indicating
that almost 98% of RCA in the classification map are truly RCA. We also notice that the SCIC method
achieved higher recall values for CCA than our method at 94.67%, indicating that 94.67% of the CCA
in the real world were identified. However, the precision value for CCA is found to be the lowest
value at 29.28% using the SCIC method, indicating that over 70% of CCA in the classification map
are misclassified. Second, our method achieved good balance between accuracy values of CCA and
RCA. Both of the f-measure values of CCA and RCA using our proposed method are at nearly 95%.
However, we find that the MCIC method achieved a high f-measure value for CCA at 92.52% with a
low f-measure value for RCA at 48.67%, and the SNIC method achieved a low f-measure value for
CCA at 44.59% with a high f-measure value for RCA at 92.94%. Finally, our proposed method achieved
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the highest classification accuracy, with the highest F-measure value for CCA at 94.56%, and RCA
at 95.13%.

Table 5. Quantitative comparison between our method and methods using different segmentation
strategies and feature sets at the pixel level. Our-MNIC: our proposed Multi-scale based Neighbor
Information Classification method. SCIC: Single-scale based Conventional Information Classification
method. MCIC: Multi-scale based Conventional Information Classification method. SNIC: Single-scale
based Neighbor Information Classification method.

Methods Our-MNIC SCIC MCIC SNIC

CCA RCA CCA RCA CCA RCA CCA RCA

Evaluation
Criteria

Precision 96.53% 97.93% 29.28% 58.45% 94.44% 33.32% 29.29% 95.84%
Recall 92.67% 92.48% 94.67% 83.95% 90.67% 90.21% 93.33% 90.21%

F-measure 94.56% 95.13% 44.72% 68.92% 92.52% 48.67% 44.59% 92.94%

5. Discussion

5.1. Extraction of CCA and RCA and Multi-Scale Based Neighbor Features

In this paper, we proposed the MNIC method to generate representative neighbor features for the
accurate mapping of CCA and RCA in VHSR imagery. Although VHSR imagery can provide more
detailed information for small targets, high within-class variance as well as low between-class variance
that characterize this kind of imagery make the detection and classification of land cover a difficult
task [34]. Current studies suggest that multi-scale segmentation and spatial contextual information can
provide valuable information in VHSR image analysis [35,36], and such methodology can be adopted
for CCA and RCA extraction. Although the CCA and RCA may have high within-class variance and
be spectrally confused with the sea water or other land cover classes, most of them are widely and
sparsely distributed, and show an obvious darker or brighter tone than the surrounding sea water.
Therefore, we can firstly adopt the multi-scale segmentation to generate semantically meaningful
image objects for CCA and RCA, and then use the neighbor features to capture these characteristics
and improve the classification performance. Although our method takes many steps, it is not complex
and achieved better classification performance. Since almost all the developed procedures can be
performed in an automatic way, our proposed method can be relatively easily implemented in a routine
analysis and management.

5.2. Related Methods and Advantages

We firstly compared our proposed method with the conventional object-based methods, such as
SCIC, MCIC, and SNIC methods (Figure 3). The differences between our proposed method and the
SCIC method emphasizes two aspects. First, we adopted the multi-scale segmentation rather than a
single-scale segmentation. It is suggested that single-scale segmentation is an unrealistically simple
scene model [37]. In this new approach, we firstly excluded the land area at a rough scale, and then we
extracted the CCA and RCA at different optimal scales. Thus, the boundaries of RCA and CCA can be
accurately delineated before classification, which also provided a set of robust features for analysis.
Second, these two methods adopted different features in the classification procedure. The compared
single-scale based classification method adopted conventional features, such as spectrum, geometry,
and texture features. In our proposed method, we adopted the neighbor features generated by a
multi-scale segmentation strategy, which obviously improved the classification performance.

Compared to the MCIC method, the main difference is that we adopted different feature sets.
In our proposed method, we added neighbor features in the feature set instead of using only
conventional features that have been used in the compared method. Our results suggest that the
adoption of neighbor features shows an obvious improvement for the extraction of RCA, especially
when some of the RCA are partly submerged in waves and surrounded by turbid sea water. This is
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because most of the RCA have an obvious darker or brighter tone than the surrounding sea water
in the complex sea environment. Meanwhile, the waves or turbid sea water can easily influence the
conventional features of RCA in VHSR images. Thus, the neighbor features are more stable and helpful
for the extraction of RCA compared with the conventional features.

Compared to the SNIC method, the main difference is that we adopted multi-scale segmentation.
In our proposed method, we adopted multi-scale segmentation to accurately delineate the
boundaries of RCA and CCA, which then provided a set of robust features for analysis. In contrast,
the boundaries of CCA are not delineated well in the SNIC method and it mainly has two influences
on the classification. First, the divided segments of CCA may have unstable neighbor features due to
the unpredictable surrounding environment; for example, it may have a totally different neighbor
features when it is surrounded by other CCA instead of the sea water. Besides, because of the high
variance of construction materials used in each CCA, each part of the CCA may have totally different
characteristics in spectrum, geometry, and texture with each other. Thus, our method can obviously
improve the classification performance by using multi-scale segmentation.

Compared to conventional pixel-based contextual information in a local neighbor area, such as
Markov Random Field [38], grey-level co-occurrence matrix [39], or lacunarity [40], our object-based
neighbor information extraction method is essential for the extraction of CCA and RCA from VHSR
imagery. Conventional contextual information used in the pixel-based method depends largely on
the selection of window size [41,42]. However, due to the various sizes of CCA and RCA in VHSR
imagery, it is difficult to find an optimal window size for both of them. Besides, as this conventional
pixel-based contextual information is based on the statistic features in a fixed-size local area, most of
them ignore the relationship between semantically meaningful image objects in OBIA, and few of
them consider the geographic characteristics between different land covers.

Some image scene classification methods may also benefit from the neighbor information.
In these classification methods, each scene image is resized to a rectangular patch for labeling [43–45].
In previous studies, researchers have used sliding window [46] or chessboard segmentation [47]
to create rectangular patches. Based on these patches, representative features are calculated for
classification. However, sliding window and chessboard segmentation are not the most suitable
methods for acquiring land cover units. They cannot acquire accurate land cover boundaries and
the neighbor information is largely limited by the fixed patch size, which lead to a decrease in the
classification accuracy. To avoid this problem, we have adopted multi-scale segmentation and an MRS
algorithm to generate semantically meaningful image objects. By using this method, we can accurately
delineate the boundaries of CCA and RCA and efficiently utilize their neighbor information. We think
the multi-scale segmentation strategy with MRS algorithm is a more suitable approach to generate
neighbor information for the extraction of CCA and RCA.

There are also some related studies with the extraction of RCA from synthetic aperture radar
(SAR) images [15,48,49]. Many of them have developed technologies to extract features based on
the pixel-level neighborhood relationship, such as gray-level co-occurrence matrix [50], local binary
patterns, and Gabor transform [51]. However, speckle noises may easily pollute features extracted
by these approaches, which may decrease the detection precision [52]. Besides, these features ignore
the relationship between CCA or RCA with the surrounding environment, which can be helpful to
improve the classification performance if properly used. Thus, we proposed a framework to extract
the CCA and RCA from the VHSR imagery by combining object-based neighbor features. Our results
indicate that the optical images are also an appropriate data source.

5.3. Scale Effects and Limitations

In our study, it is crucial to generate a set of meaningful segments, because the contextual features
utilized in this paper are based on the object-based neighbor information. For example, if a segment of
CCA is totally surrounded by other segments of CCA instead of sea water, it will have totally different
neighbor features. Thus, we tried to improve the segmentation performance by several approaches.
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First, we chose the MRS algorithm, since it follows the region-merging principle and can generate
satisfied segmentation results with our imagery. Second, in our two-level segmentation framework, we
employed an objective method, the ESP tool, to find the optimal SPs for RCA and CCA, respectively.
Then, we tried different methods to reduce the influence of over or under-segmentation. For example,
we performed a class merge algorithm after the unsubmerged area was extracted, so that all the
segments of CCA can be surrounded by sea water.

However, there are still some limitations of our proposed method. First, it is relatively time
consuming for the ESP tool to obtain optimal SPs with the VHSR imagery, because it is based on
iterative segmentation and calculation of LV for each scale. Second, uncertainties still exit in our
multi-scale segmentation strategy, such as the selection of appropriate SP for land and sea area
separation, and further research of fully automated methods is essential. Therefore, improvements
and experiments in the selection of appropriate SPs and segmentation methods that can directly
and accurately delineate the boundaries of different land cover classes are still required. Finally, our
proposed method only applies to surface water cover and use detection. However, in some places,
such as Shandong Province in northeast China, there are a few submersible cages.

6. Conclusions

The mapping of coastal aquaculture areas lays a solid foundation for intelligent monitoring
and management of coastal ecosystems. In this study, we proposed a framework to extract different
types of coastal aquaculture areas by combining object-based neighbor information. Our proposed
approach effectively identified and discriminated two types of coastal aquaculture, with 96% overall
accuracy. This method integrates multi-scale segmentation and neighbor features. It firstly applied
multi-scale segmentation to generate semantically meaningful image objects for different land covers,
and then calculated neighbor features based on the multi-scale segments. These neighbor features
were regarded as spatial contextual information, and adopted in the final classification procedure for
the extraction of CCA and RCA.

Classification accuracy has been obviously improved using multi-scale segmentation and neighbor
features compared to other conventional OBIA methods, such as SCIC, MCIC, and SNIC methods.
Our results show that neighbor features generated by multi-scale segmentation can provide valuable
information for the extraction of CCA and RCA. Furthermore, it also shows that the multi-scale
segmentation and neighbor features can obviously improve the classification performance for the
extraction of CCA and RCA, respectively. Our approach shows the applicability and effectiveness of
the combination of multi-scale segmentation and neighbor information.

Compared to the widely used conventional pixel-based contextual information or image scene
classification methods, object-based neighbor features are more effective in quantifying the contextual
information of CCA and RCA. Based on semantically meaningful image objects, the neighbor features
take geographic characteristics between different land covers into consideration.

Future studies may apply our developed approach with some minor adjustments to extract other
kinds of complex objects in a homogeneous environment, like sea, grassland, or desert. Besides,
more segmentation methods should be investigated and refined for effective delineation of CCA and
RCA. In addition, more potential neighbor features should be explored for modeling geographic
characteristics between different land covers.
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